## ELENA BAJ

Full Assistant at the Chair of Topography, Politecnico of Milano; Assistant Professor, Institute of Ceodesy, Topography and Photogrammetry, University of Pisa, Italy.

## PHOTOGRAMMETRY WITH ONE PHOTOGRAM EMPLOYING A CAMERA AND A

PROJECTOR
We think it is possible to get from a photogram the data we generally obtain from 2 photograms if we project on the object, before the taking, a pattern of known geometry.
We can actually do the following observations:
a) projecting, from a point $P_{1}$, by means of a metric projector, a reticle, or other known plane pattern on an object, we shall get a deformed and spatial reticle; let's assume the reticle and the coordinates of its points in respect to the axes of the metric projector are stamped on the object;
b) if we have two takings from 2 different points, $P_{1}$ and $P_{2}$, of the deformed reticle, we can get a spatial reconstruction of it;
c) if the used camera and projector have the same optics, by the taking from $P$, we shall obtain the projected reticle. (Actually it is not strictly necessary that the camera and the projector have the same optics).
Thus, only one taking is necessary, namely from $P_{2}$ : and we have,
from every point of view, a stereoscopic pair of photograms of
the spatial reticle and it will be possible to plot it, i.e. to plot the points of the object.
In fig. 1 we can see a stereoscopic couple formed by a photogram and a reticle (pseudo-photogram) (the couple, as said, also gives a stereoscopic effect).
For the plotting we can employ an analytical or analogical device.
However the procedure can be much simplified: it is enough to consider that the coordinates of the projected points of the pattern (pseudo-photogram) are known; in normal taking, it is necessary to measure only one proper coordinate of the points of the pattern on the photogram in respect to its axes. This technique, if suitably studied, will be able to give remarkable applications not only in the biostereometric field but in all cases in which it is difficult to recognize the corresponding points in a stereoscopic couple. It could be useful in dynamical problems or other ones too.

fig. 1

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

